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Abstract  
Background and Objective: Sleep deprivation is an important cause of driver drowsiness. Surface electromyography 

(sEMG) of the upper arm and the shoulder is an important physiological signal affected by the driver drowsiness. The 

objective of this paper is to derive the pattern of sleep-deprived drivers’ sEMG. 

Materials and Methods: The tests were conducted on 7 men with no sleep disorder aged between 25 and 50 years in a 

driving simulator. Each subject participated in the tests once without sleep deprivation and another time with two hours of 

sleep in the 24-hour period before the tests. The sEMG signal from the upper arm and shoulder muscles were measured for 

the mid deltoid, clavicular portion of the pectoralis major, and triceps and biceps long heads. Four features including power 

spectral kurtosis (SK), mean frequency, absolute amplitude, and root mean square (RMS) were extracted. 

Results: The k-nearest neighbors (k-NN) algorithm classifier detected drowsiness with 90% accuracy, 82% precision, 

77% sensitivity, and 94% specificity. Driver’s sleep deprivation can be detected through sEMG signal with 85% accu-

racy, 80% precision, 70% sensitivity, and 88% specificity. 

Conclusion: The sEMG signal amplitude and the frequency content of the sleep-deprived subjects were higher than 

those of the normal subjects by 37% and 15%, respectively. For the sleep-deprived subjects, muscle contraction did not 

change much in transition between the last two levels of drowsiness, while the normal subjects experienced 27% drop in 

this transition. At the last level of drowsiness, the sleep-deprived subjects experienced mental drowsiness without sig-

nificant change in the muscle contraction level. 

© 2018 Tehran University of Medical Sciences. All rights reserved. 
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Introduction

1
 

Driver drowsiness results in fatal road acci-

dents every year. About 21% of fatal driving 

crashes between 2009 and 2013 in the United 

States of America (USA) were caused by falling 

asleep while driving (1). Researchers have em-

ployed several methods for detecting drowsiness 

of drivers. These methods are divided into three 

broad categories of vehicle dynamics, facial ex-

pressions, and physiological signals. Among these 

methods, physiological signals have a better accu-

racy and reliability for detecting drowsiness (2). 
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During driver’s transition from being awake to 

falling asleep, several physiological features relat-

ed to muscle movements change. Drivers initially 

resist to the sleep, so they experience muscle con-

traction first. Then, they yield to drowsiness and 

experience muscle relaxations. Electromyography 

(EMG) is the most accurate method to detect 

movements of muscles (3). Surface EMG (sEMG) 

measures muscle electrical activities via surface 

electrodes placed on the driver’s arm skin. Elec-

trical voltage is generated by each muscle contrac-

tion depolarization along its membrane. The 

changes in the electrical potential of the muscle 

membrane produced by the propagation of the ac-

tion potential can be measured with electrodes (4).  

Wireless EMG devices have the potential to be 

used in real-time driver drowsiness detection sys-
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tems. A wired EMG device impairs and interferes 

with the task of driving. In a study by Fu and Wang, 

a non-contact data acquisition system was used to 

collect the EMG data from the driver. It used com-

plex computations with high processing power (5). 

In another study, wireless stainless-steel EMG sen-

sors called Myo
TM

 were used to evaluate muscle 

activities (6). MyoTM does not interfere with the 

driving task, but suffers from low signal-to-noise 

ratio. In addition, it cannot be placed exactly on the 

designated target muscle and may be displaced from 

the initial location while driving. We used regular 

wired EMG signals in this paper.  

Sleep deprivation affects drivers’ EMG fea-

tures. The effect of sleep deprivation on the driv-

ing performance is comparable to that of sleep 

disorders such as narcolepsy. Sleep deprivation 

affects alertness, attention, and both rule-based 

and skill-based cognitive functions. Driver’s abil-

ity to respond to a disturbance is reduced as a re-

sult of sleep deprivation (7). This paper provides a 

powerful tool for drowsiness researchers to detect 

normal drivers’ sleep deprivation using low-cost 

wireless EMG systems. The main contributions of 

this paper are as follows: 

 This paper shows how sleep deprivation af-

fects EMG features such as power spectral kurto-

sis (SK), mean frequency, shape factor, absolute 

amplitude, geometric mean, and root mean  

square (RMS). 

 EMG features can detect drowsiness with 

90% accuracy. 

 The elapsed time is not a reliable criterion for 

driver’s estimation of drowsiness level caused by 

sleep deprivation; thus, time is replaced with the 

observer rating of drowsiness (ORD) in this paper. 

Next, the experimental procedure including the 

driving simulator, test participants, and the EMG 

signal acquisition apparatus are explained. Then, 

the signal processing method used in this research 

is presented. Finally, the EMG features and their 

classification are described. 

Materials and Methods 

Tests were conducted in a driving simulator 

and signals related to the vehicle dynamics, facial 

expressions, and the EMG of the upper arm and 

the shoulder were recorded.  

Driving simulator: The Nasir Semi 003TM 

driving simulator was used to conduct drowsiness 

tests as shown in Figure 1. The dynamic model of 

the virtual car has 14 degrees of freedom (DF) 

solved in real time. The lateral force of the road is 

applied to the steering wheel by a DC motor. The 

subject interacts with pedals and a shift stick. The 

virtual vehicle kinematic and kinetic data are rec-

orded with the sampling rate of 30 Hz.  

 

 
Figure 1. Nasir Semi 003TM driving simulator 

 

The participants drove on a monotonous  

67-km-long closed-loop three-lane highway. Fig-

ure 2(a) shows the highway scene from a third-

person point of view. Figure 2(b) shows the top 

view of the quasi-circular highway. The radius of 

curvature was as large as 10 km to prevent sudden 

wakening up of the driver. The subjects were 

asked to drive as fast as 80 km/h to 100 km/h 

within the middle lane. If the drowsy driver ap-

plied no steering wheel torque, the car would de-

part from the lane.  

 

 
(a) 

 
(b) 

Figure 2. (a) Driving scene from a third-person point 

of view, (b) top view of the 67-km-long closed-loop 

driving path 

 

Participants: The sufficient number of exper-

imental sessions can be approximated with the 

assumption of a normal distribution. We used the 

Wald method (8) for binormal distribution with 

the 95% confidence results and the error band of 

11%. This method requires 84 experimental ses-

sions. It is equivalent to seven subjects participat-

ing in four sessions of the drowsiness tests. The 

subjects were men and aged between 25 and  

50 years with the average age of 34.5 years.  

The lifestyle and sleep data of the subjects were 

recorded. The following information was extracted 
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from the questionnaire: age, general health, food, 

lifestyle, weight, body mass index (BMI), regular 

caffeine intake, and driving records. Prior sleep 

data in the week before the test were obtained from 

the sleep log including bedtime, wake-up time, and 

sleep duration for each night in the week leading to 

the test. Table 1 shows the demographic character-

istics of the subjects. 

 
Table 1. Demographic characteristics of the subjects 
Subject 

number 

Age 

(year) 

Height 

(m) 

Weight 

(kg) 

BMI 

(kg/m
2
) 

1 25 1.73 83 27.73 

2 25 1.89 100 27.99 

3 30 1.76 75 24.48 

4 50 1.68 89 31.53 

5 40 1.78 88 27.77 

6 37 1.78 69 21.77 

7 26 1.72 55 18.59 
BMI: Body mass index 

 

Medical records of the subjects were also 

checked. They had a normal dominant shoulder 

function and no one had any sleep disorder, muscu-

lar disorder, history of shoulder pathology, and 

addiction to drugs, alcoholic drinks, and cigarettes.  

The test procedure was observed by all sub-

jects as it had been explained to them before the 

tests. The subjects had been allowed to watch TV 

or do any chore that did not require intensive 

physical activity during the past 24 hours before 

the test. The subjects were forbidden from drink-

ing tea, coffee, or any other caffeinated beverages 

6 hours prior to and during the test. The sleep dep-

rivation tests were conducted by allowing the sub-

jects to sleep for only two hours at the night prior 

to the test. For normal subjects, a similar experi-

mental design was carried out, but with a regular 

full-night sleep. The beginning time of the tests 

was 1.5 to 3 hours after the subject’s wake-up for 

normal subjects. The procedures were conducted 

in accordance with the Declaration of Helsinki. 

The Maintenance of Wakefulness Test (MWT) 

was used to screen the subjects. A couple of days 

before the driving test, each of the seven subjects 

took an MWT. According to the American Acad-

emy of Sleep Medicine (AASM), MWT measures 

the ability to stay awake for a defined period of 

time (9). The subjects were asked to try to stay 

awake as long as possible during each test session. 

The trials were terminated after 40 minutes if no 

sleep had occurred, or after unequivocal sleep on-

set defined as 3 continuous epochs of stage 1 

sleep or one epoch of any other stage of sleep had 

occurred (9). After the MWT, subjects with unu-

sual behaviors were identified and excluded from 

the tests.  

Signal acquisition: The sEMG signals from 

the upper arm and shoulder muscles were record-

ed. Electrodes had a 32 × 41 mm rectangular 

shape with the Ag/AgCl core material. They were 

placed in a bipolar formation at both muscle ends. 

Before the test, the designated muscles were 

rubbed with isopropyl alcohol. The reference 

ground electrode was installed on the subject’s 

left hand wrist. The sEMG signal was recorded 

with eWave 32D from ScienceBeamTM at the 

sampling rate of 1 kHz. Superficial muscles hav-

ing an important role in the task of driving were 

selected to locate the electrodes. These muscles 

are mid deltoid muscle, the clavicular portion of 

the pectoralis major muscle, and the triceps and 

biceps long heads (10-13). In Figure 3, the elec-

trodes on the subjects’ skin are shown. 

 

 

 
Figure 3. The surface electromyography (sEMG) elec-

trode placement on the shoulder and the upper arm 

 

The driver drowsiness level can be evaluated by 

non-physiological methods (14-16). Time is not a 

good criterion for analyzing driver drowsiness be-

cause of the non-stationary nature of drowsiness, 

especially during driving. For example, the driver 

may feel drowsy after a few minutes since the test 

begins but may return back to wakefulness after a 

lane departure. The ORD is a non-physiological 

method quantifying the level of driver drowsiness 

based on the judgments of human observers (16). 

Three dedicated and expert observers rated the 

drowsiness levels of the subjects over the course of 

driving. The criteria for scoring the drowsiness lev-

el included the facial and behavioral signs and the 

driving pattern. The scores were ranged between 1 

and 5, 1 being the state of not drowsy and 5 indi-

cating the state of extreme drowsiness. The sEMG 

Triceps 

Biceps 

Mid deltoid 

Clavicular portion 

of the pectoralis 

major 
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features were analyzed for each level of the ORD 

rather than analyzing based on the elapsed time. At 

the first level of the ORD (not drowsy) and at the 

second (slightly drowsy), the driver is in the wake-

ful state and shows little fatigue sings. At the third 

level of the ORD (moderately drowsy), the driver 

begins to exhibit fatigue signs and struggles to fight 

against drowsiness. At the fourth level of the ORD 

(very drowsy), microsleeps (MSs) begin and the 

driver has a limited cognition about the driving 

environment. Finally, at the fifth level of the ORD 

(extremely drowsy), the driver makes little effort to 

stay awake. 

Feature extraction: Time-domain and fre-

quency-domain features of the EMG signal are 

affected by fatigue and drowsiness. 46 features 

were evaluated out of which 5 features were more 

sensitive to drowsiness. The frequency-related 

features including power SK and mean frequency 

and three magnitude-related features including 

absolute amplitude, geometric mean, and RMS 

were extracted. 

Power spectral kurtosis (power SK): This fea-

ture is a measure of power spectral probability 

distribution tailedness.  

Mean frequency: Mean frequency is the total 

sum of the power spectrum of the signal product 

of the magnitude of frequency divided to the net 

sum of powers. The mean frequency shows how 

the frequencies shift as drowsiness increases.  

Absolute amplitude: The absolute amplitude 

of the EMG signal is the average sum of the abso-

lute magnitudes of signal. The amplitude of EMG 

signal shows the muscle contraction level.  

Root mean square (RMS): The RMS is a 

measure of the signal strength. 

Results 

The sEMG signals of the upper arm and the 

shoulder muscles were recorded for seven healthy 

subjects. One set of tests was conducted for sub-

jects with normal sleep schedule and another set 

for the sleep-deprived subjects. Features most 

sensitive to the drowsiness levels are of prime 

interest to be used in the classification. We select-

ed five features including power SK, mean fre-

quency, absolute amplitude, geometric mean, and 

RMS. These features are more distinct in the 

moderate drowsiness state where the subjects 

struggle to fight against drowsiness. 

Drowsiness level estimation: Sleep depriva-

tion fastens the pace of the ORD increasing from 

1 to 5. The percentage of time taken at each ORD 

level is an important feature in differentiating be-

tween normal and deprived subjects. Figure 4 and 

5 show the percentage of ORD levels for normal 

and sleep-deprived subjects, respectively.  

 

 
Figure 4. The percentage of the time spent at each  

level of the observer rating of drowsiness (ORD) for 

normal subjects 

 

Normal subjects spent more driving time in the 

moderate drowsiness state compared with the time 

spent in the other four states of drowsiness within 

the 80-minute tests. Between 39%-50% of the 

session time was spent in the moderate drowsiness 

state (ORD = 3). Session 3 was the most perilous 

session as the percentage of time spent at this ses-

sion for the very drowsy (ORD = 4) and the ex-

tremely drowsy (ORD = 5) states was more than 

that at other sessions. 

 

 
Figure 5. The percentage of the time spent at each  

level of the observer rating of drowsiness (ORD) for 

sleep-deprived subjects 

 

The sleep-deprived subjects spent more time in 

the very drowsy (ORD = 4) state compared with 

other states. The deprived subjects spent between 

42%-52% of their driving time in the very drowsy 

(ORD = 4) state. Similarly, they spent between 5-18 

percent of their driving time in the extremely 

drowsy (ORD = 5) state, which is about twice of 

the time spent at this state by the normal subjects.  
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sEMG signal frequency and amplitude  

features: In transition from wakefulness to mod-

erate drowsiness to extreme drowsiness, sEMG 

frequency and magnitude features change for both 

normal and sleep-deprived subjects with different 

trends. The magnitude of muscle fiber activation 

is specified by the neural drive. In transition from 

wakefulness to moderate drowsiness, the central 

nervous system (CNS) reduces the neural drive to 

the muscles and decreases the produced force  

(17, 18). In the moderate drowsiness level  

(ORD = 3), the driver attempts to compensate for 

the effect of reduction of the muscle performance 

and applies further force. When the MSs begin 

(ORD = 4), the neural drive to muscles is reduced 

further and the driver almost gives up to reverse 

muscle relaxation. In the extreme drowsiness  

(ORD = 5), the sEMG signals reach the lowest value. 

The results indicated that the sEMG features 

for the sleep-deprived subjects did not change 

much from ORD = 1 to ORD = 5 compared with 

the normal subjects. 

The power spectral density (PSD) of normal 

and sleep-deprived subjects shows noticeable dif-

ferences in the frequencies of less than 100 Hz. 

Figures 6 and 7 show the PSD of the sEMG in the 

bandwidth of 10 Hz to 160 Hz, and ORD ranged 

between 1 to 5 in the normal and sleep-deprived 

subjects, respectively. The frequency was divided 

into periods of 10 Hz, the median of these periods 

across all frequencies were taken, which is shown 

in the figures 6 and 7.  

 

 
Figure 6. The power spectral density (PSD) of surface 

electromyography (sEMG) of normal subjects 

 

As shown in the figures 6 and 7, the frequency 

content of greater than 100 Hz had a little power 

magnitude. The dominant spectral frequencies 

were between 10 Hz and 20 Hz. 

 
Figure 7. The power spectral density (PSD) of surface 

electromyography (sEMG) of sleep-deprived subjects 

 

In the normal subjects, the dominant spectral 

frequencies power was about 3-10 percent more 

than sleep-deprived subjects in the different ORD 

levels, as shown in figure 8. The differences be-

tween normal and sleep -deprived subjects in the 

moderate drowsiness (ORD = 3) was minimum 

and increased in the next ORD levels.  

 

 
Figure 8. The power spectral density (PSD) difference 

between normal and sleep-deprived subjects in the 10 

Hz and 20 Hz bandwidth 

 

In the range of 30 Hz to 100 Hz, the power of 

sEMG changes with respect to ORD. Figure 9 

shows the PSD for a) wakefulness, b) moderate 

drowsiness, and c) extreme drowsiness in both 

normal and sleep-deprived subjects.  

Next, the results for two frequency-based  

features and four magnitude-based features  

are presented. 

A. Power SK 

Figure 10 shows the mean of power SK for the 

normal and sleep-deprived subjects. The kurtosis 

was larger by 5%-30% for the normal subjects com-

pared with the sleep-deprived subjects. The reason is 

that the normal subjects had a richer low-frequency 

content of 10-20 Hz resulting in a more tailed distri-

bution. This is consistent with figure 8 that shows 

that the PSD for the normal subjects is higher than 

that for the sleep-deprived subjects at all levels of 

drowsiness within the bandwidth of 10-20 Hz. This 
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is also consistent with Figure 9 as the sleep-deprived 

subjects have a more concentration of the PSD in the 

mid frequencies of 35 Hz to 95 Hz resulting in a 

smaller kurtosis. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The power spectral density (PSD) between 

30 Hz and 100 Hz for normal and sleep-deprived sub-

jects in a) wakefulness, b) moderate drowsiness, and c) 

extreme drowsiness 

 

Figure 11 shows the normalized power SK of 

the a) normal and b) sleep-deprived subjects at the 

sEMG bandwidth of 10-350 Hz. 

 

 
Figure 10. Surface electromyography (sEMG) power 

spectral kurtosis (SK) of normal and deprived subjects 

before normalization of the signal 

In Figure 11(b), the power SK feature for each 

subject is normalized by dividing by his maxi-

mum Euclidean length. This normalization makes 

it possible to compare the normal and sleep-

deprived feature trends more easily. The normali-

zation also removes interindividual differences 

and makes the trends of drowsiness levels more 

meaningful. Normalization is only used to better 

represent the data in the boxplots. No normaliz-

tion was done in the classification of the data. 

For the normal subjects, the normalized power 

SK had an ascending pattern. For the deprived 

subjects, the power SK had a maximum at the 

moderately drowsy state (ORD = 3). We conclud-

ed that the sleep-deprived subjects did not have a 

very distinct pattern of PSD kurtosis at different 

levels of drowsiness; a wakeful sleep-deprived 

driver (ORD = 1) exhibited a PSD kurtosis almost 

at the same level as the PSD kurtosis at the ex-

tremely drowsy state (ORD = 5). 

 

 
(a) 

 

 
(b) 

Figure 11. The boxplots of the normalized power spec-

tral kurtosis (SK) for a) normal and b) sleep-deprived 

subjects 

 

B. Mean frequency 

As the level of drowsiness increased, the high-

frequency contents of the sEMG signal were re-

duced resulting in lowering of the mean frequen-

cy. Figure 12 shows the mean frequency decreas-

es from 56.4 Hz to 47.3 Hz monotonically for the 

normal subjects and from 61.6 Hz to 53.0 Hz for 

the sleep-deprived subjects. 

The mean frequency of the sleep-deprived 
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subjects was higher than that of the normal sub-

jects. The normal subjects were richer in the low-

frequency bandwidth of 10-20 Hz. On the other 

hand, the sleep-deprived subjects were richer in 

the bandwidth of 30-100 Hz. Thus, the mean fre-

quency feature of the sleep-deprived subjects was 

higher than that of the normal subjects at all levels 

of drowsiness. At the moderate level of drowsi-

ness (ORD = 3), the sEMG signal of the normal 

subjects increased to resist against falling asleep, 

making it closer to the mean frequency of the 

sleep-deprived subjects. At wakefulness  

(ORD = 1), the mean frequency of the sleep-

deprived subjects was higher by 5.1 Hz compared 

with the normal subjects. This difference nar-

rowed to 2.0 Hz at the moderate level of drowsi-

ness (ORD = 3), and increased again to 5.6 Hz at 

the extreme level of drowsiness (ORD = 5). 

 

 
Figure 12. Surface electromyography (sEMG) mean 

frequency of normal and deprived subjects before nor-

malization of the signal 

 

Figure 13 shows the normalized mean fre-

quency of the normal and sleep-deprived subjects 

at the sEMG bandwidth of 10-350 Hz. Sleep dep-

rivation causes muscle contraction even during 

extreme drowsiness.  

The normalized mean frequency trend of the 

sleep-deprived subject declined from wakefulness 

(ORD = 1) to extreme drowsiness (ORD = 5) by 

only 5.2%. In contrast, this decline for the normal 

subjects was 13.2%. In particular, there was a 

sudden fall of 8.2% from the very drowsiness lev-

el (ORD = 4) to the extreme drowsiness level 

(ORD = 5) for the normal subjects. 

C. Absolute amplitude 

The mean absolute amplitude of the sEMG de-

creases at higher levels of drowsiness. For the 

normal subjects, the muscles contraction level 

increased from 4.9 mV during the wakefulness 

(ORD = 1) to 5.5 mV during the moderate level of 

drowsiness (ORD = 3) as shown in figure 14. 

 

 
(a) 

 
(b) 

Figure 13. Normalized boxplot of the mean frequency 

for a) normal and b) sleep-deprived subjects 

 

This was equivalent to only 12.1% rise. Then, 

it underwent a steep drop of 52.8% to 2.6 mV at 

the extreme level of drowsiness (ORD = 5). The 

sleep-deprived subjects had a different pattern. 

The absolute amplitude of the sEMG remained 

rather constant at 6.0 mV from wakefulness  

(ORD = 1) to moderate drowsiness (ORD = 3). 

Then, it underwent a mild drop of 17.0% to 5.0 mV 

at the very drowsy level (ORD = 4) and remained 

constant at extreme drowsiness (ORD = 5). 

 

 
Figure 14. Surface electromyography (sEMG) mean 

absolute amplitude of normal and deprived subjects 

before normalization of the signal 

 

The absolute amplitude of the sEMG signal for 

the deprived subjects was more than that of the 

normal subjects. Sleep deprivation results in the 

driver fatigue and more muscle contraction. On 

average, the difference of the absolute amplitude 
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between the sleep-deprived subjects and the nor-

mal subjects was 0.7 mV from the ORD = 1 to 

ORD = 4. At extreme drowsiness (ORD = 5), this 

difference was 2.4 mV, which was significantly 

higher than that in the previous ORDs.  

Figure 15 shows the normalized sEMG abso-

lute amplitude of a) normal and b) sleep-deprived 

subjects. The median of the absolute amplitude 

reached to a maximum at the moderate drowsiness 

(ORD = 3) and declined at the ensuing ORD lev-

els. The median of the absolute amplitude of the 

normal subjects at ORD = 5 was 39.6% lower 

than that at ORD = 3. This percentage for the 

sleep-deprived subjects was 10%. 

 

 
(a) 

 
(b) 

Figure 15. Normalized boxplot of the mean absolute 

amplitude for a) normal and b) sleep-deprived subjects 

 

D. RMS 

The RMS for the sleep-deprived subjects re-

mained almost constant at 13.4 mV for all ORD 

levels as shown in figure 16. For the normal sub-

jects, it increased by 6.7% from 9.7 mV during 

the wakefulness (ORD = 1) to 10.4 mV during the 

moderate level of drowsiness (ORD = 3). It then 

experienced a drop of about 25.7% at the extreme 

drowsiness level.  

The RMS of the sleep-deprived subjects had a 

higher value than that of the normal subjects. In 

the moderate drowsiness (ORD = 3), this differ-

ence between the sleep-deprived and normal sub-

jects was 28.8% and reached 71.9% in the ex-

treme drowsiness (ORD = 5). The sleep-deprived 

subjects experienced higher levels of muscle 

contraction resulting in higher RMS values. 

 

 
Figure 16. The Surface electromyography (sEMG) 

root mean square (RMS) of the normal and sleep-

deprived subjects before normalization of the signal 

 

The normalized RMS patterns in both the nor-

mal and the sleep-deprived subjects showed a 

maximum at the moderate drowsiness (ORD = 3) 

as shown in Figure 17(a and b). The differences 

between the maximum and the minimum normal-

ized RMS for the normal and the sleep-deprived 

subjects were 23.8% and 11.3%, respectively. In 

other words, the normalized RMS of the sleep-

deprived subjects was rather constant and inde-

pendent of the ORD levels. Sleep deprivation was 

the dominant factor in the median RMS of the 

sEMG signals. 
 

 
(a) 

 
(b) 

Figure 17. Normalized boxplot of root mean square 

(RMS) for a) normal and b) sleep-deprived subjects 

 

Classification: The drowsiness levels were 

classified based on the sEMG features. The mod-

erate drowsiness level (ORD = 3) plays an im-

portant role in the driver sleep drowsiness detec-
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tion as s/he applies countermeasures to drowsi-

ness (19). After this level, MSs begin. So, detec-

tion of this level of drowsiness can result in an 

early prevention of MSs and reduction of driving 

accident risks. In the classification conducted in 

this paper, the first three levels of the ORD, i.e.,  

1, 2, and 3, are categorized as wakeful, and the 

last two levels of the ORD, i.e., 4 and 5, are cate-

gorized as drowsy. Driving is safe in the first 

three levels and unsafe in the last two levels. 70% 

of the data were randomly used for training, 15% 

for validation, and 15% for testing. 

Learning-based methods are suitable for pro-

cessing biological signals even at the presence of 

noisy and missing data. Computational feasibility 

is an important advantage of these methods. The 

main idea of these classifiers is to map the feature 

space to a higher order for better data separation. 

The k-nearest neighbors (k-NN) algorithm is a 

learning-based classifier. In this method, neigh-

bors are selected from the nearest set of objects 

having the minimum difference in the intended 

property. This classifier achieved the best perfor-

mance of 90% accuracy, 82% precision, 77% sen-

sitivity, and 94% specificity. 

The classification results also showed that the 

driver sleep deprivation can be detected through 

sEMG signal with a high accuracy of 85%, 80% 

precision, 70% sensitivity, and 88% specificity. 

Discussion 

This study investigated the sEMG features of 

the normal and sleep-deprived subjects during 

transition from wakefulness to extreme drowsi-

ness for seven healthy male subjects. The lifestyle 

and the sleep data were recorded from all subjects 

and completed through a questionnaire. They had 

a normal dominant shoulder function and no one 

had any sleep disorder, muscular disorder, and 

history of shoulder pathology. Prior sleep data in 

the week before the test was obtained from the 

sleep log. The results are valid for healthy male 

subjects with no addiction to drugs, alcoholic 

drinks, and cigarettes. 

The tests were conducted in a driving simula-

tor on a monotonous 67-km-long closed-loop 

three-lane highway. Drowsiness was evaluated 

with the non-intrusive ORD method. It is advan-

tageous to the self-reported measurements such as 

the Karolinska Sleepiness Scale (KSS) and the 

Stanford Sleepiness Scale (SSS), as it does not 

cause awakening and sudden reduction of the 

drowsiness level of the subject. 

Most drivers underestimate the deteriorating 

effect of the sleep deprivation on driving and the 

risk of falling asleep at the wheel. The sleep-

deprived drivers may spend most of their driving 

time experiencing MSs and sudden shifts between 

states of slight drowsiness (ORD = 2) and extreme 

drowsiness (ORD = 5). There is a misconception 

among many drivers that if they do not suffer 

from sleep disorders, it would be safe to drive 

even with sleep deprivation. 

Conclusion 

The sEMG signal amplitude and the frequency 

content of the sleep-deprived subjects were higher 

than those of the normal subjects.  

The sEMG amplitude-related features of the 

sleep-deprived subjects changed less during wake-

fulness to moderate drowsiness transition com-

pared with those of the normal subjects.  

For the sleep-deprived subjects, muscle con-

traction did not change much between the drowsi-

ness levels of 4 and 5, while the drop between 

these two levels was very significant (27%) for 

the normal subjects. In other words, at the last 

stage of drowsiness, the sleep-deprived subjects 

experienced mental drowsiness as would be ob-

served by the electroencephalography (EEG) sig-

nals, while the muscle contraction level stayed 

almost at the same level as that in the very drowsy 

level of 4.  

The sEMG signal amplitude and the frequency 

content of the sleep-deprived subjects were higher 

than those of the normal subjects by 36% and 

15%, respectively. The sEMG amplitude of the 

sleep-deprived subjects changed less during wake-

fulness to moderate drowsiness transition com-

pared with that of the normal subjects.  

In the future, one can compare the sEMG sig-

nals of patients with sleep disorder with those of 

the healthy subjects under sleep deprivation. 
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